

# Back-office infrastructure

Panagiotis Tzenos Michael Vassilantonakis Athanasios Tolikas





**HIT Portal** 

The H.I.T. Portal is a web-based data collection, management and aggregation provisioning platform designed, developed and maintained since 2008.









## **HIT PORTAL/KOMVOS Identity**

## MAIN FUNCTIONALITIES /ROLES

- Content aggregator for the Transport domain
- Data management and **observatory**
- Hosting of internal services and services for third parties
- Platform for service development
- Provision of research infrastructure, datasets and software
- **Support** to researchers and academics
- Provision of services to public and organizations/ administrations



#### **HIT Portal**





## HIT Portal

#### **OPhysical (hardware - Sensing)**

- Research infrastructure (owned by HIT)
- Public infrastructure open research

# ODigital (software - Knowledge creation)

- Modeling and simulation environments
- Big data analytics tools

## **OTest beds**

- C-ITS (COMPASS4D and C-Mobile projects)
- Big data analytics (Big Data Europe project)
- Traffic Management Systems interoperability [future]
- National Access Point (CEF Crocodile2) [future]
- o i-mile [future]





## HIT Portal – Hardware Infrastructure (1)

The supporting hardware of the H.I.T. Portal is being continuously upgraded in order to follow the latest technological standards. The hardware infrastructure that supports the H.I.T. Portal consists of the following parts:

- Web, Application, Database and Virtualization servers (Windows Server and Linux)
- High Performance Clusters (HPCs)
- Network Switches, Routers, Firewalls







#### HIT Portal – Hardware Infrastructure (2)

- HIT's main infrastructure is located at Thessaloniki
- GRNET provides significant processing power located in Athens
- Other, smaller infrastructure components are located in different cities of Greece







## HIT Portal – Hardware Infrastructure (3)

#### **HIT Portal Infrastructure**

20 Servers

2 High Performance Cluster (HPC) Servers

2 Network Access Storage (NAS)

**12 Virtual Servers** 

2 Routers

2 Hardware Firewalls

5 Manageable Switches

29 Workstations

6 Notebooks

4 Tablets





#### **GRNET Infrastructure**

External processes (GRNET)

Elasticsearch

Apache Flink

Apache Kafka

#### Hardware

#### Software

- Two high processing virtual machines
  - Web Server
  - Database

| • | Apache | Flink |
|---|--------|-------|
|   |        |       |

- Apache Kafka
- Postgresql



#### HIT Portal – Hardware Infrastructure (4) External Hardware Infrastructure

Low cost smart city sensors: 43 Bluetooth Devices Detectors

Cooperative Intelligent Transport Systems: 7 Cooperative Road Side Units and 4 Cooperative On Board Units



























000

Co-funded by the Erasmus+ Programme SRPSKA ASOCIJACIJA MENADŽERA of the European Union



#### HIT Portal – Software

| Operating Systems                                                  | Management Tools<br>Microsoft System Center Operation<br>Manager<br>Hewlett Packard Insight Manager<br>Cisco LMS | Database Tools<br>Microsoft SQL Server 2005<br>Microsoft SQL Server 2008<br>Post SQL<br>MySQL<br>ESRI ArcSDE 9.2 | Development Tools<br>Microsoft Visual Studio<br>Android Studio<br>Microsoft SharePoint Designer<br>MathWorks MATLAB<br>IBM Rational Rose |  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Statistical Tools</b><br>SPSS<br>SPSS SmartView                 | GIS Tools                                                                                                        | <b>CADTools</b><br>AutoDesk AutoCAD Mechanical                                                                   | ESRI ArcGIS MapObjects<br>ESRI ArcGIS Crystal Reports<br>ESRI ArcPAD Application Builder                                                 |  |
|                                                                    | ESRI ArcGIS Server 9.2<br>AutoDesk Map Server<br>ESRI ArcGIS ArcInfo/ArcView<br>Desktop 9.2                      | AutoDesk AutoCAD Electrical<br>AutoDesk AutoCAD Architectural<br>Desktop                                         | Transportation Tools<br>VTG Vista<br>Emm2<br>PTV AG Visum                                                                                |  |
| Dedicated transport<br>simulation/modelling software               | Programming Tools                                                                                                | OpenStreetMap Tile Server                                                                                        | PTV AG Vissim<br>McTrans HCS+<br>TRL Transyt<br>AIMSUN                                                                                   |  |
| Dashboards                                                         | AMPL<br>CPLEX<br>C++                                                                                             |                                                                                                                  | Data Grabbers                                                                                                                            |  |
| Kripis<br>ThessReports<br>Mobility Lab<br>Safer-LC<br>TheseTraffic | C#<br>Visual Basic<br>Java<br>J#                                                                                 | Services<br>Map Matching<br>Web Services<br>Mobile Services                                                      | Twiiter<br>OASTh                                                                                                                         |  |
| Thesstraine                                                        |                                                                                                                  | Routing<br>Data Analysis<br>Data Visualization<br>Traffic prognosis                                              |                                                                                                                                          |  |



## HIT Portal – Data Sources

We aggregate data from our eco system with different types of Detectors.





## HIT Portal – Data Sources

The processing of these data can lead to useful conclusions about current land use and may also reveal mobile mobility patterns that can be used to predict traffic conditions.





## HIT Portal – Data Sources

Data from multiple sources are combined to better understand any correlation and dependencies among them







#### **PORTAL SYSTEM**

SPSS

MATLAB/

SimuLink

VTG Vista

Apache Flink

Off-line

Real time

L

1

Environmental

Detectors

L

SQL

server /

Spatial

ArcGIS

Desktop

& Server

McTrans

HCS+

Elasticsearch

SQL







|   |                                 |                          | Pro                                  | cess                                | 56   | es le               | vel                           |                  |                  |
|---|---------------------------------|--------------------------|--------------------------------------|-------------------------------------|------|---------------------|-------------------------------|------------------|------------------|
| Γ | E                               | mbedd                    | ed too                               | ls                                  | $\ $ |                     | Enablin                       | ng tools         | 5                |
|   | Tracking &<br>Geocoding<br>tool | Monitoring<br>& Alerting | Routing<br>algorithm                 | Dynamic<br>forecasting<br>algorithm |      | SPSS                | SQL<br>server /<br>Spatial    | Emm2             | VISUM/<br>VISSIM |
|   | Navigation                      | KPIs                     | Device<br>monitoring<br>in real time | Map<br>matching                     |      | MATLAB/<br>SimuLink | ArcGIS<br>Desktop<br>& Server | Arc<br>Logistics | AIMSUN           |
|   | Delphi and<br>Promithea         | Outliers<br>cleaning     | Location<br>based<br>functions       |                                     |      | VTG Vista           | McTrans<br>HCS+               | TRL<br>Transyt   |                  |

| Da           | ata manageme     | nt              | Automation |
|--------------|------------------|-----------------|------------|
| verification | interoperability | normalization   | functions  |
| mining       | aggregation      | standardization | Tunctions  |







| · · · · · · · · · · · · · · · · · · · | Section 1 |   |
|---------------------------------------|-----------|---|
| J.m.                                  | i it.     |   |
| "commencements"                       | 2         | - |

| Alg   | rithm 1 Boosted & Neurst Neighbour                              |
|-------|-----------------------------------------------------------------|
| 10    | nputsi                                                          |
|       | $S = s_1 = (x_1, y_1)$                                          |
| 2.1   | nitialise                                                       |
|       | $u_i^0 \leftarrow 0, i = 1,, \alpha$                            |
| 1214  | $S_0 \leftarrow S$                                              |
| 0.1   | $\operatorname{or} t = 1 \operatorname{to} T \operatorname{du}$ |
| - 41  | $S_t \leftarrow S_{t-1}$                                        |
| 4     | for $s_q \in S_t$ do                                            |
| ÷.,   | $N_q \leftarrow k$ nearest neighbors                            |
| - Fr. | algorithms                                                      |
| *     | UIGOLUIIIIS                                                     |
|       | if label(s, p) g, then                                          |
| 10    | for $s_i \in N_i$ do                                            |
| 447.1 | If y, p y, then                                                 |
| 12    | $w_s^d = -u_s^d - \lambda/d(x_y, x_t);$                         |
| 13:   | eiber                                                           |
| 14    | $w_i^d \leftrightarrow w_i^d + \lambda/d(x_0, x_i)$             |
| 15    | end if                                                          |
| 36    | end for                                                         |
| 17:   | end if                                                          |
| 18.   | end for                                                         |
| 18    | if $label(s_n) = g_n V_{s_n}$ then                              |
| 38    | brenk.                                                          |
| 11.   | end if                                                          |
| -     | and from                                                        |





 Real time traffic status by estimating the average moving speed of the vehicles on the road network. The speed estimations are produced every 15 minutes although it is possible for this frequency value to change in the future





 The procedure of calculating travel times runs every 15 minutes and utilizes the sensors' data collected within the previous hour. All sensors' data collected are then probed based on the unique MAC addresses of the detectable mobile devices and the exact time of occurrence of each detection. Consequently, the travel time estimation for each mobile device between the sensors is being estimated.





# HOW we use KOMVOS for commercial projects and internal basic research



## HIT PORTAL (Project sample)



#### www.mobithess.gr



## HIT PORTAL (Research sample)



E. Mitsakis, I. Stamos, Diakakis M., J.M. Salanova Grau, (2014) Impacts of high intensity storms on urban transportation: Applying traffic flow control methodologies for quantifying the effects, International Journal of Environmental Science and Technology, November 2014, Volume 11, Issue 8, pp. 2145-2154 -DOI 10.1007/s13762-014-0573-4.



## HIT Portal – Open Data

• Part of the collected data are also available as open data

#### www.opendata.imet.gr



For real-time data an HTTP REST API Endpoint is also available



## HIT Portal – Open Data APIs

The H.I.T. Open Data portal is intended to be a unique access point for open data on transport research in Greece.

- Historical datasets renewed on a monthly basis
- ✓ Powerful restful HTTP API (powered by "The Datatank") which serves real-time datasets in different machine readable formats (JSON, XML, CSV, KML etc.)

The datasets are freely available to universities, companies and individual developers who are willing to use them for their research or to create relevant services, under the "Open Data Commons Open Database License (ODbL)"





## **Useful Links**

www.mobithess.gr/

www.thessmd.imet.gr/

www.certh.gr/ www.imet.gr/

www.trafficthess.imet.gr www.trafficpaths.imet.gr www.trafficthessreports.imet.gr

www.opendata.imet.gr

Josep Maria Salanova Grau

jose@certh.gr

+302310 498 433



#### **THANK YOU!**