Master in BIG DATA IN BUSINESS

cybersecurity-related content:

security and privacy blockchain technologies & applications

Giuseppe Bianchi giuseppe.bianchi@uniroma2.it

Università di Roma Tor Vergata

Giuseppe Bianchi

Security and Privacy: huge topic!

→ Several 'dimensions'

- ⇒ Network security, perimetral protection, monitoring, ...
- ⇒ Systems security, vulnerability assessment, forensics
- ⇒ Storage / data base security, data protection, access control
- ⇒ Auditing, security assurance, risk assessment, certification
- ⇒ Security data analytics, data mining, intelligence analytics
- ⇒ Visibility of security & visualization
- ⇒ Secure computation privacy preserving data mining
- \Rightarrow Etc etc etc... (!!)

➔ Before all this... need for (at least!) very basic crypto and system security background

→ So... how to fit into as little as 18 + 9 h???!!

And have something practical (e.g. beyond just a basic crypto or vulnerability class...)

Our approach / 1

→Do NOT teach crypto, BUT learn how (good) crypto can be poorly used

⇒Driving use case scenario: Web security (TLS)

→A lot (!) of broader take home messages! Examples:

⇒Security features negotiation?

 \rightarrow Prevent bidding-down attacks!

 \Rightarrow Compress then encrypt?

 \rightarrow CRIME attack, 2012!

⇒MAC then encrypt?

→Padding oracles (2002,2013,2015, 2016)

 \rightarrow Very similar issues in other applications and scenarios

⇒ Implementation issues & side channels may play havoc!

→ROBOT, 2018

→Transient Execution attacks, 2018+

Giuseppe Bianchi

Our approach / 2

→Practical system security

 \Rightarrow Hands on laboratory (with kali linux):

→learn how attackers think, what they use, how they act (very practical, a few penetration examples)

Take home: system security is not easy

⇒What about data-centric security? Some very preliminary insights...

= Giuseppe Bianchi

Our approach / 3

→Secure storage?

- ⇒Hash-based data structures, Merkle trees
- ⇒ In Blockchain class, but not only blockchains
 - →Big data example: Google's certificate transparency, for PKI security
 - →A real world example of a standard (though cleverly organized) DB which most would today call «blockchain», but which is NOT.

Web security pillar: Certificate Authorities ARE trusted!

Giuseppe Bianchi

Fact: trusted CA assumption at stake

How to cope with malicious CAs? Idea: gigantic worldwide DB which anyone can check!

Blockchain class

\rightarrow What they are

⇒And when you (don't!) need them

→Basic principles

⇒Ledger architectures / Consensus / Scripting

→Which technologies?

⇒Practice with Multi-chain

\rightarrow Which applications?

⇒Bitcoin

⇒Multi-signatures

⇒Lightning network offchain payments

⇒Crypto currencies and ERC20 ICOs (and fake ones)
⇒etc