Course: Advanced data analysis in pharmaceutical research and development

Teacher: Svetlana Ibrić, Ana Protić, Teodora Đikić, Biljana Otašević, Jelena Đuriš, Katarina Nikolić

Course status: Elective

ECTS points: 7

Prerequisites: none

Course objective: Analysing complex data in pharmaceutical research and development

Learning outcomes

Students will acquire new knowledge and skills in the field of data analysis in pharmaceutical research and development.

Knowledge of recent and advanced computational methods of rational drug design, which include ligand based methods (QSAR, pharmacophore analysis, virtual screening of ligands databases) or structure based methods (virtual docking, molecular dynamics). Students will master advanced theoretical methods and acquire skills for use of various programs for determining bioactive conformations of ligands, formation and validation of QSAR models, virtual screening, virtual docking, and molecular dynamics. Knowledge of creating *in silico* methods and optimal procedure for rational design, evaluation, and selection of novel drug candidates with improved pharmacological, physicochemical and pharmacokinetic properties.

Students will understand how to apply the concept of quality by design (QbD) in pharmaceutical research and development; by defining the target drug quality profile (QTPP), critical quality attributes and process parameters (CQA, CPP) and by defining the design space. Students will be able to compare and select appropriate methods for advanced analysis of data generated during drug formulation and manufacturing development, including machine learning methods (neural networks, decision trees, self-organizing maps, etc.) and multivariate classification and regression methods.

Students will be introduced with methods which are used in quality control of finished drug products with special concern about certificate of analysis. They will gather knowledge about different separation mechanisms in selected chromatographic systems in order to apply predictive mathematical models in description of retention behaviour of analytes, as molecules with specific chemical structures. Based on that, they will be able to perform analysis of quantitative relationship between structure and retention behaviour (QSRR study), to define optimal chromatographic conditions for quality control of drugs and to evaluate the significance of selected structural characteristics and physicochemical properties on retention of molecules in chromatographic system.

Course structure and content

- 1. Introduction to data analysis in pharmaceutical research and development.
- 2. Ligands and targets databases
- 3. Advanced computational methods of rational drug design
- 4. In silico methods and optimal procedure for rational drug design
- 5. The concept of quality design (QbD) in pharmaceutical research and development
- 6. Critical quality attributes and process parameters (CQA, CPP). Design space. Computer methods for defining design space.
- 7. Advance data analysis in pharmaceutical research and development
- 8. Advanced data analysis in continuous process verification in the pharmaceutical industry.
- 9. Application of different advanced computational methods for calculation of molecular descriptors, physicochemical, quantum chemical, topological and constitutional.
- 10. The use of experimental design in defining the experimental region aimed for the proper recognition of patterns in retention behaviour.
- 11. Application of different statistical programs for building and testing of predictive QSRR models with the assistance of machine learning methods.

1.	G. L. Partick ed. (2017) "An Introduction to Medicinal Chemistry", 6th Edition, Oxford
	University Press UK.

- 2. D. J. Abraham ed. (2010) Burger's Medicinal Chemistry and Drug Discovery, 7th Edition, Volume 1: Methods in Drug Discovery, John Wiley&Sons, Inc.
- 3. D. J. Abraham ed. (2010) Burger's Medicinal Chemistry and Drug Discovery, 7th Edition, Volume 2: Discovering Lead Molecules, John Wiley&Sons, Inc.
- 4. Victoria PhD F. Roche PhD, S. William PhD Zito PhD, et al. (2019) Foye's Principles of Medicinal Chemistry, 8th ed. Williams DA, Lemke TL, editors. Baltimore: Lippincott Williams&Wilkins.
- 5. Andrew R. Leach. (2001) Molecular Modelling: Principles and Applications 2nd Edition. Glaxo Wellcome Research and Development, Pearson Education.
- 6. Guidelines, ICH Harmonised Tripartite. "Pharmaceutical development." *Q8 (R2) Current Step* 4 (2009); "Quality risk management." *Q9 Current Step* 5 (2006); "Pharmaceutical quality system." *Q10 Current Step* 5 (2008)
- J. Djuris ed. (2013) Computer-Aided Applications in Pharmaceutical Technology, 1st Edition, Woodhead Publishing UK.
- 8. R. Kaliszan. (2017) Quantitative structure property (retention) relationships in liquid chromatography, Chapter 23 in Liquid Chromatography: Fundamentals and instrumentation, 2nd edition. Elsevier Inc.
- 9. L. Komsta, Y.Vander Heyden, J. Sherma. (2018) Chemometrics in Chromatography, 1st Edition, CRC Press, Taylor & Francis group, LLC.

The number	Other classes:			
Lectures:	Labs:	Workshops:	Research study:	
5		1	2	
Teaching m	ethods			
Individual ar	nd group we	ork: lectures and labs		

Individual and group work; lectures and labs

Evaluation/Grading (maximum 100 points)				
Pre-exam requirements	Points	Final exam	Points	
Project (conceptual solution)	30	Project (implementation)	70	

Study program / study programs: Advanced data analytics
Course: Data analysis in biological sciences
Teacher: Prof. Dr Marko Đorđević, Prof. Dr Biljana Miličić, Doc. Dr Andrej Korenić, Ass. Dr
Jovana Kuzmanović Pfićer, Dr Tijana Išić Denčić
Course status: Elective
ECTS points: 7

Prerequisites:	none					
Course objecti						
Analyzing con	nplex biological	data				
Learning outco						
	-	-		the field of data analysis		
1				and cell biology will be		
Students will a	also be able to an	alyse complex	data	obtained by processing r	nicros	scopic
images in hist	ology. In addition	n to the image p	roce	ssing, this subject will al	so foc	cus on
aspects of sign	nal processing in	neurosciences s	uch	as resting membrane pot	ential	, action
potential, loca	l potentials, etc. S	Students will al	so be	e familiarized with the fo	undat	ions of
biostatistics, a	nd with applying	modern statisti	cal t	ests in biological science	es.	
	ire and content					
1. Introduction	on to data analysi	s in biology				
2. Nucleic ac	ids and protein d	atabases				
3. Basic anal	ysis of nucleic ac	ids and protein	sequ	iences		
4. Analysis of	data obtained by	light and electr	on n	nicroscopy		
5. Analysis of	the resting mem	brane potential	and a	action potential		
6. Evaluation	of local membrar	ne potentials: ap	plica	ation in neurosciences		
7. Statistical a	nalytical tests in	biological resea	rch			
8. Correlation	and regression a	nalysis in biolog	gy			
Literature/Rea	adings					
		alysis for the L	ife S	ciences with R. 2017. Ch	napma	in and
	New York.					
				Statistical Methods in B		
and Analy	sis of Experimen	ts and Regressi	on. 2	014. Chapman and Hall/	CRC.	. New
York.						
Daniel Du	rstewitz. Advanc	ed Data Analys	is in	Neuroscience. Springer	Intern	ational
Publishing	g. 2017. London,	UK				
🗆 Zvelebil, N	Marketa J., and Je	eremy O. Baum	. Un	derstanding bioinformati	ics. G	arland
Science, 2	007.					
\Box Shortliffe,	E.H., Cimino, J.	J. Biomedical In	nforr	natics: computer applica	tions i	in
healthcare	and biomedicine	. 4th Edition, K	indl	e Edition. Springer-Verla	ag Loi	ndon
2014					-	
The number of	f class hours per v	week			Othe	er classes:
Lectures:	Labs:	Workshops:	Res	earch study:	_	
5		1	2			
Teaching met						
Individual and	l group work; lec					
			naxiı	num 100 points)		
Pre-exam requ		Points		Final exam		Points
Project (conce	ptual solution)	30		Project (implementation	1)	70

Study program / study programs: Advanced data analytics
Course: Data analysis in fundamental and clinical medicine
Teacher: Prof. Dr Biljana Miličić, Ass. Dr Jovana Kuzmanović Pfićer, Dr Tijana Išić Denčić
Course status: Elective
ECTS points: 7
Prerequisites: none
Course objective

Adopting new knowledge and skills related to data analytics in medicine.

Learning outcomes Training students for data processing in fundamental and clinical medical disciplines. Students will master analysis of data obtained by processing signals in the field of electrocardiography, electroencephalography, microscopy and other methods used in modern medical diagnostics. Students will also be familiarized with the basics of medical statistics, with particular reference to statistical analytical tests in medical research and computer methods for statistical processing of medical data. Within this course, students will also gain basic knowledge of medical informatics. Course structure and content 1. Introduction to data analysis in medicine.

- 2. Analysis of data obtained as result of the application of diagnostic tests in medicine.
- 3. Analysis of electrocardiograms
- 4. Analysis of electroencephalograms
- 5. Data analysis in microscopy
- 6. Statistical analysis in clinical medicine
- 7. Fundamentals of medical informatics
- 8. Contemporary computer programs for statistical analysis of data in medical research
- 9. EDC (Electronic Data Capture) systems in medicine
- 10. Statistical analysis in dentistry design of repeated measurements (split-mouth design)

- Charan Singh Rayat. Statistical Methods in Medical Research. Springer, 2018, New York
- □ Katherine Marconi, Harold Lehmann. Big Data and Health Analytics. Auerbach Publications; 1st Edition. 2014. New York
- Nadinia A. Davis, Betsy J. Shiland. Statistics & Data Analytics for Health Data Management. Saunders; 1 edition. 2016. London, UK
- □ Kim JS, Dailey R. Biostatistics for Oral Healthcare. Blackwell Pub Professional, Iowa VCA: State University Press; 2007.

The number	Other classes:			
Lectures:	Labs:	Workshops:	Workshops: Research study:	
5		1	2	
Teaching m	ethods			
Individual an	nd group work; lec	tures and labs		
	Evalua	ation/Grading (1	maximum 100 points)	
Pre-exam ree	quirements	Points	Final exa	n Points
Project (cond	ceptual solution)	30	Project (implement	tation) 70

Course: Practical analysis of noisy and uneven time series

Teacher: Luka Č. Popović, Anđelka Kovačević, Dragana Ilić

Course status: Elective

ECTS points: 7

Prerequisites: -

Course objective

Most of the phenomena in nature, medicine, science, business and engineering are measured at certain time moments that are most often non-homogeneous in time. Extracting information from such series is a great challenge for analysts because standard techniques are mostly developed for evenly distributed time series without a prominent noise. Therefore, specific methods for analyzing such time series are extremely important for all mentioned data types. This course aims to explain the theoretical and practical core of the concept of time series analysis with such disadvantageous characteristics.

Learning outcomes

The student is trained for an effective analysis of noisy time series that are unevenly distributed in time, which can be encountered in the sciences, medicine, business, engineering, as well as in the analysis of the time series of social networks and those found in the sociological research.

Course structure and content

Missing data. Sample size. Stochastic and deterministic processes. The concept of stationary time series. Extrapolative and decomposition models. Methods of exponential smoothness. The concept of nonstationary time series. Non-stationary tests. Stabilization of variance, structural or regime stability.

Overview of homogeneous and non-homogeneous series. Signal and noise information in the time series. Gaussian process for time series modeling. Poisson's process for time series modeling. Random Walk model. Fourier's analysis. Wavelet analysis. Detection difficulties: (1 / f) noise in the time series, Signal detection methods in noisy and non-homogeneous series. Maximum Likelihood Estimate (MLE).

Literature/Readings

Terence Mills, Applied Time Series Analysis, Academic Press, 2019

Asis Kumar Chattopadhyay, Tanuka Chattopadhyay, Statistical Methods for Astronomical Data Analysis, Springer, 2014

Labs:	XX 7 1 1		
	Workshops:	Research study:	—
		3	
hods			
group work;	lectures and labs		
	Evaluation/Gr	ading (maximum 100 poi	ints)
uirements	Points	Final exar	n Points
	10	Oral exam	30
vity	60		
	hods group work; uirements	group work; lectures and labs Evaluation/Gr uirements 10	group work; lectures and labs Evaluation/Grading (maximum 100 por uirements Points Final exam 10 Oral exam

Course: Big Data in space science and its analysis

Teacher: Luka Č. Popović, Andjelka Kovačević, Dragana Ilić

Course status: Elective

ECTS points: 7

Prerequisites: -

Course objective

Daily large amounts of new data related to the cosmic research are being collected, using both ground-based and space-based telescopes, as well as those collected from missions that observe Earth from space (e.g. Copernicus program of satellites). Earth observation data from satellites can be used for various human activities on Earth, from sociological (migration monitoring), biological, industrial, telecommunication, to those related to the study of climate change.

The goal of this course is to introduce students to what type of data can be obtained from space research, providing a broad and practical introduction to large data: data analysis techniques including databases, data mining, machine learning and visualization of data; data analysis tools, including the use of SQL and Python. Tools and techniques are practical, providing the foundation for future research and application.

Learning outcomes

The student is able to handle and apply tools and techniques for processing large data in their original research areas as well as for eventual applications in the space industry.

Course structure and content

Introduction: The method and technique of collecting data in astronomy using telescopes and satellites. Methods of collecting satellite data for Earth observation. The aims of these observations and their application in research and practical application. Introduction to large databases and their organization. Platforms of large databases and storage of large data. Big data in space science. Large Data Surveys and Providers in Space Science: LSST, ELT, GAIA, SDSS, etc.

Database mining with the SQL and the Python, introduction to Flexible Image Transport System (FITS), FITS average and median, effective way of comparing data from different databases (cross-matching data), displaying large data from Earth's surveying satellites: visualization of large data on the map.

Dimensionality Reduction: PCA, PCA kernel, PCA as noise filter in data, introduction to Scikit Learn, Hyperparameters and model validation, best model selection, categorical image characteristics, inserting inaccessible data, Bayesian classification, Regression, Classification and Clusters, Machine Learning in the Python. Data mining algorithms, Training models, Support Vector Machines with the application of recognition of parts of complex images, Decision Trees and Random forest with application, Kernel density estimation with application on recognition of parts of complex images, final project in Machine Learning in space science.

Literature/Readings

1. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems, 2017, O'Reilly Media

2. Jake VanderPlas, *Python Data Science Handbook*, 2017, O'Reilly Media

The number	r of class hour	Other classes:		
Lectures:	Labs:	Workshops:	Research study:	
Teaching m	ethods: Indivi	dual and group work	; lectures and labs	
		Evaluation/Gra	ading (maximum 100 poin	nts)
Pre-exam re	equirements	Points	Final exam	n Points
Class activit	у	10	Oral exam	30
Hands on ac	tivity	60		

Study program / study programs: Advanced data analytics

Course:	Introduction	to time	series	analysis
----------------	--------------	---------	--------	----------

Teacher: Marija Mitrović Dankulov, Aleksandra Alorić, Andrej Korenić

Course status: Elective

ECTS points: 10

Prerequisites: none

Course objective

Acquiring basic knowledge about theoretical and applied aspects of time series analysis.

Learning outcomes

Students will acquire knowledge about basic concepts of time series analysis and their application to data science. They will be able to analyse in detail continuous and discrete time series, to describe their characteristics, to choose a proper theoretical model and to infer the interaction matrix based on time series correlations.

Course structure and content

Main course topics:

Stationary processes, auto-correlation and autocovariance functions; Moving Average (MA) processes, Auto-Regressive (AR) processes and Auto-Regressive/Moving Average (ARMA) processes; correlogram; spectral analysis, periodogram; elements of estimation and forecasting and applications to empirical data.

Detrended fluctuation analysis. Hurst exponent. Furier transform for time series analysis and prediction.

Time series correlations and network extraction.

Literature/Readings

1. Shumway, Robert H., and David S. Stoffer (2011), Time series analysis and its applications: with R examples, Springer, ISBN: 978-1-4419-7864-6

The number	Other classes:			
Lectures:	Labs:	Workshops:	Research study:	-
4			3	
Teaching m	ethods			
Individual ar	nd group work; lect	ures and labs		
	Eval	uation/Grading (maximum 100 points)	
Pre-exam re	equirements	Points	Final exam	Points
Homework		0-40	Project: application to	real 0-60
			system	

Study progra	am / study program	s: Advanced dat	a ana	lytics			
•••	oduction to complex						
	rija Mitrović Danku			ć			
Course statu	2	,					
ECTS points	s: 10						
Prerequisite							
Course obje							
v		out complex net	work	ks, methods and tools for	the quantitati		
analysis of their structure, and applications.							
Learning ou							
0		concepts of the	eorv o	of complex networks and	be able to us		
	-	-	•	ill be able to map the dat			
				r structure and infer syste			
• 1	results of statistic	•	i ulci	i structure and inter syste	in properties		
	ture and content	ai allafysis.					
Course struc							
Main course	tonics.						
	•	s and basic netw	ork c	oncepts (nodes, edges, adac	cency matrix		
	vorks, multiplex net			oncepts (nodes, edges, adae	citey matrix,		
			k stri	icture (degree, clustering, r	motifs central		
				n matrix, community structu			
		• • •		rties (Erdos-Renyi model, E			
	astic block model, E						
	in biological system	-	0	-F)			
	n social systems						
	ocesses on networks	5					
•	to networkx python						
	to complex networks		5				
Literature/R	<u> </u>		-				
M. E	. J. Newman (2018),	Networks: an in	trodu	ction, Oxford University Pr	ress, ISBN: 97		
	805090			•			
A. L.	Barabasi (2015), Ne	etwork Science, O	Camb	ridge University Press, ISB	3N: 978-		
	076266. Available o						
	of class hours per				Other classe		
	-				_		
Lectures:	Labs:	Workshops:	Res	earch study:			
Lectures: 4	Labs:	Workshops:	Res 3	earch study:			
		Workshops:		earch study:			
4 Teaching m				earch study:			
4 Teaching m	ethods nd group work; lec	tures and labs	3				
4 Teaching m Individual a	ethods nd group work; lec Evalua	tures and labs	3	num 100 points) Final exam	Point		
4 Teaching m	ethods nd group work; lec Evalua	tures and labs htion/Grading (r	3	num 100 points)	Point eal 0-60		

Course: Analytics and optimization

Teachers: Milan Stanojević, Dragana Makajić-Nikolić, Gordana Savić, Marija Kuzmanović

Course status: Elective

ECTS points: 10

Course objective

Introduction to analytics and optimization with aim of optimal decision making using quantitative models and methods.

Learning outcomes

- . Students will be able to identify and analyze real world problems and data collected in the process,
- . Students will be able to formulate real world problem as an optimization problem,
- Students will be able to use optimization methods and techniques (especially methods and techniques for solving linear and integer programming models)
 Students will be able to analyze and visualize results.

Course structure and content

Basics of analytics and role of optimization in analytics. Descriptive analytics (basics of data clearing, missing data handling, summarizing, grouping, classifying, clustering, visualizing,...). Predictive analytics (basic of forecasting using trend, smoothing,

regression functions...). Prescriptive analytics – mathematical modelling and optimization. Methods for solving mathematical models. Sensitivity analysis. Multicriteria analysis.

Heuristics. Methods for alternative selection in the presence of uncertainly. Application of all methods using MS Excel tools, AMPL... Solving real life problems and presenting the results.

Literature/Readings

1. J.A. Lawrence, B.A. Pasternack, Applied Management Science, John Wiley & Sons Inc. 2002.

2. A. Makhorin, Modeling Language GNU MathProg Language Reference, Free Software Foundation, 2013.

3. R. Saxena, A. Srinivasan, Business Analytics: A Practitioner's Guide, Springer, 2013

4. J. R. Evans, Business Analytics: Methods, Models and Decisions, Pearson, 2013

5. R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press / Brooks /Cole Publishing Company, 2002.

The number of	Other classes:			
Lectures: 4	Labs:	Workshops:	Research study: 3	

Teaching methods

Lectures are followed by the corresponding presentations; all models will be illustrated in the hypothetical example. Students will, through case studies using appropriate software, analyze the input data, define quantitative models, analyze results, and make alternative scenarios with the aim to set the basis for decision making.

Evaluation/Grading (maximum 100 points)					
Pre-exam requirements	Points	Final exam	Points		
Participation in class	10	Written exam	30		
Case study	60				

Study progre	m / study prog	grams: Advanced dat	ta analytics	
Course: Data	• • •	grams. Auvanceu ua	ta analytics	
		vić Nenad M. Aničić	, Srđa Bjeladinović, Ana Paji	é Simović
Course statu		vic, ivenau ivi. Amere	, Sida Djeladillović, Alia i ajr	
ECTS points				
Prerequisites				
Course object				
•		a of detabases and	latahaga managamant gyata	ma
·	·	e of ualabases allu (latabase management system	
Learning out		antifu data naguinan	ants and to design detabase	They will get
		•	ents and to design database	• •
			ponents and they will learn	
			e databases of different type	es.
	ture and conte	nt		
Introduction				
	•	stems and data model	lS	
Relational dat				
		gn. Entity-relationshi	p model	
	tabase design. I tion of relations	Relational model.		
			and antimization	
		ses: Denormalization	and optimization I servers. Connections to the c	latabagag
SQL envir		a, catalog, chemis and	i servers. Connections to the c	latabases.
	ftware environn	nante		
NoSQL datab		licitis		
~	and concepts.	CAP theorem		
•			SE and ACID properties	
Key-value		run ve unurysis or Dri	SE und Mene properties	
Document				
	mily databases			
Graph data				
NoSQL da	tabase design to	echniques		
Map reduc	e	-		
NoSQL qu	ery languages a	and usage		
	NoSQL databas			
Literature/R	eadings			
1. Lazar	ević, B., Marja	nović, Z., Aničić, N.,	& Babarogić, S. (2016). Baze	e podataka (7th
editio	n, ISBN 978-80	6-7680-258-6). Belgr	ade, Serbia: FON.	
2. Sadal	age P., & Fowl	er M. (2014). NoSQI	Distilled: A Brief Guide to the	ne Emerging World
of Po	yglot Persisten	ce. US:Addison-Wes	ley. ili Strauch C. (2011) NoS	QL Databases.
Avail	able online at: l	https://www.christof-	strauch.de/nosqldbs.pdf	
The number	of class hours	per week		Other classes:
Lectures:	Labs:	Workshops:	Research study:	_
4		3		
Teaching m				
Individual an	ıd group work	; lectures and labs		
	 Ev	valuation/Grading (maximum 100 points)	
		aluation of auting (
Pre-exam red		Points	Final exam	Points

Study program / study programs: Advanced data analytics Course: Models of Statistical Learning

Teacher: Bulajić Milica, Vukmirović Dragan, Radojičić Zoran, Marković Aleksandar, Jeremić Veljko, Dobrota Marina, Maričić Milica, Zornić Nikola, Mutavdžić Dragosav

Course status: Elective

ECTS points: 10

Prerequisites: none

Course objective: Acquiring the ability to employ advanced models of statistical learning, to interpret the obtained results, and the ability to recognize the model of statistical learning suitable for solving the given problem. Mastering the usage of advanced features of modern statistical and simulation software.

Learning outcomes: After the course, students will acquire the experience in understanding the concepts of advanced models of statistical learning in contemporary statistical and simulation software and the experience needed for their application in real-word business problems.

Course structure and content

The concepts and techniques of models of statistical learning are first introduced through the review and presentation of theoretical foundations, followed by practical work using contemporary statistical and simulation software. **Regression models**

Logistics regression

Lasso regression

Polynomial regression

Classification trees

Resampling methods

Cross validation

Jackknife

Parametric and nonparametric bootstrap

Supervised learning

Unsupervised learning

Support Vector Machines (SVM)

Application of Monte Carlo simulation in advanced data analytics

Agent based-simulation – description of agent behaviour using the models of statistical learning

Implementation of the covered methods and models in contemporary statistical and simulation software

- 1. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning Data Mining, Inference, and Prediction, Springer. Available online: https://www.springer.com/gp/book/9780387848570
- 2. James, G., Witten, D., Hastie, T., Tibshirani, R. (2016). An Introduction to Statistical Learning with Applications in R, Springer. Available online: https://www.springer.com/gp/book/9781461471370
- 3. Bulajić M., Jeremić, V., Radojičić, Z. (2012). Advance in Multivariate Data Analysis -Contributions to Multivariate Data Analysis, Faculty of Organizational Sciences
- 4. Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with NetLogo. MIT Press.

https://mitpress.mit.edu/books/introduction-agent-based-modeling
--

The number of class hours per week							
Lectures: Labs:	Workshops:	Research study:					
4	1	2					
Teaching methods: Ind	ividual and group v	work; lectures and labs					
	Evaluation/Grading (maximum 100 points)						
Pre-exam requirements	Points	Final exam	Points				
Project (implementation) 60	Verbal exam	40				

Study program / study programs: Advanced data analytics
Course: Neural networks and deep learning
Teacher: Zoran V. Ševarac, Dragan O. Đurić
Course status: Elective
ECTS points: 10
Prerequisites: none

Course object						
				of neural networks and de	ep lea	rning, and
A	plication of these t	echnologies in va	arious	s domains		
Learning outo						
Students will le	earn basic neural ne	etwork concepts,	types	s and application procedure	s, and	develop
skills required	for their practical a	pplication.				
Course struct	ure and content					
Basic concepts	: Artificial neurons	s, activation funct	tions,	types and architectures of	neural	networks,
learning algori	thms. Mathematica	and theoretical	mode	els and analogies with biolo	ogical s	ystems.
Error functions	s and optimization	methods.		-	-	
Neural network	k architectures:					
Multilayer per	ceptrons, algorithm	s for learning mu	ıltilay	ver perceptrons and their ap	plicati	on.
	neural networks an		•		•	
Problem solvir	ng problem using n	eural networks ar	nd dee	ep learning, problems in the	e pract	ical
applications.					•	
	for different types of	of problems that a	are re	solved using neural networ	ks and	deep
learning: classi	ification, clustering	, prediction.		-		-
Areas of applic	cation of neural net	works and deep l	learni	ng: medicine, finance, proc	luction	, defence,
software devel	opment.					
Literature/Re	· ·					
	0	ern Recognition,	Chris	stopher Bishop,Oxford Uni	versity	Press,
	ISBN-13:978-0198			1 17	5	
			load?	doi=10.1.1.679.1104&rep=	rep1&	type=pdf
	*			-	-	
				Raul Rojas, Springer-Verla	g, 1996).
ONLI	NE: <u>http://page.mi.</u>	tu-berlin.de/rojas	s/neur	al/index.html.html		
. Funda	mentals of Neural I	Networks: Archit	ectur	es, Algorithms and Applica	ations.	Laurene
	t, PearsonEducatio				,	
. Deep I	Learning, Ian Good	Itellow, Yoshua I	Bengi	o, Aaron Courville, MIT P	ress, 20)16
. Docur	nentation and exa	amples from Ne	urop	h project		
	neuroph.sourcefo	-	r			
· · · · ·	of class hours per	-			Othe	classes:
	Labs:	Workshops:	Res	earch study:	_	C105555.
4	Labs.	workshops.	3	caren study.		
Teaching me	thods		5			
-	d group work; lec	tures and labs				
	<u> </u>			num 100 points)		
murviuuai an	Evel		пахи	IIIIIII IUU DOIAIS)		
						Points
Pre-exam req	uirements	Points		Final exam		Points
Pre-exam req						Points 70

Study program / study programs	. Advanced det	0.000	Intion		
Study program / study programs	: Advanced dat	a ana	lytics		
Course: Programming			V Čerev Deve O Dev		t
Teacher: Vladan B. Devedžić, Boj Course status : Elective	Jan B. Tomic, Z	oran	v. Sevarac, Dragan O. Đu	ric, An	itun Balaz
ECTS points: 10					
Prerequisites: none					
Course objective	nt nuccucum	n ~ 1	an avaga an athada and	tooh	niawaa in
Detailed introduction to current	nt programmi	ing i	anguages, methods and	tech	inques in
advanced data analytics.					
Learning outcomes			1 1 1/1		6.4
Students will master appropriate		-	-	ng stat	e-or-the-
art programming languages in a	dvanced data a	inaly	′S1S.		
Course structure and content					
Most of the classes are focused		-	•		-
are introduced through practical					
course. It is envisaged that diffe					
according to the development of	f the field so th	nat it	always works with state-	-of-the	e-art
languages.					
Introduction					
Installation and use of appropria	ate programmin	g env	vironments		
Program libraries and APIs					
Documentation and its efficient	use				
Data types					
Simple data types	1 . (1	1	1-4-4-4		
Arrays, strings, lists, dictionarie		npiex	data types		
Classes and objects, constructor Operations, expressions, loops, bra		n a m	athoda avaantiona		
Various types of operations and		115, 11	lethous, exceptions		
Various types of expressions	operands				
Functions and methods (various	s types)				
Iterators and generators	(jpes)				
Exception handling					
Standard and non-standard libra	aries				
Working with libraries importat		sis			
Data processing and analysis	2				
Data formats, data storage, data	filtering, data o	lispla	чy		
Preparation of data for analysis	(various technic	ques)			
Statistical data processing and a	analysis using a	pprop	oriate program libraries		
Data visualization					
Working with current libraries f	for data visualiz	ation	1		
Literature/Readings	1 0 11 1	2 1		р	
. D. Beazley, B.K. Jones, Py					
2013. Online. Available: h 3rd/9781449357337/	ups://www.orei	my.co	om/library/view/python-coo	JKDOOł	<u> </u>
	"D 2014 O 1		Available. http://	1 -1	olr # 00/
		inne.	Available: http://www.co		
The number of class hours per w		р		Othe	r classes:
Lectures: Labs:	Workshops:	Res 3	search study:	_	
		3			
Teaching methods	uroa and lake				
Individual and group work; lect					
		naxi	num 100 points) Final exam		Dointa
Pre-exam requirements Project (implementation)	Points 50				Points 50
1 IOJECI (IIIIPIEIIIEIIIalioII)	50		Programming problem		50

Study program / study programs: Advanced data analytics	
Course: Social Network Analysis	
Teacher: Jelena Jovanović, Aleksandra Alorić, Marija Mitrović Dankulov	
Course status: Elective	
ECTS points: 10	
Prerequisites: none	
Course objective	
To guide and assist students in:	
 learning about main concepts, methods, and techniques of social networ developing a solid understanding of i) the kinds of analytical questions that can be dealt with using the SNA approach; ii) pros and cons of individe and techniques, as to be able to select appropriate SNA methods / technique problem / question acquiring practical skills in the analysis of network data, using publicly software tools and datasets. 	s and/or problems lual SNA methods ues for a particular
Learning outcomes	
Students will develop a solid understanding of main SNA concepts, meth	ods, and
techniques. They will also get an insight into the potentials and limitation	is of these
methods and techniques, and thus be able to choose appropriate one(s) fo	
application case. Furthermore, they will acquire practical skills in using S	SNA software
tools for doing network analysis with real-world datasets.	
Course structure and content	
Main course topics:	
Graph-based data representation (nodes, edges, adjacency matrix, etc.)	
Network features (degree distribution, connectedness, transitivity, etc.).	
Centrality measures (degree centrality, betweeness centrality, eigen vector	or centrality, etc)
Communities in a network. Community detection.	
Statistical models of network formation (e.g. ERGMs).	
Diffusion of information and innovation through a network.	
All course topics will be introduced through practical work with publicly	available
software libraries for SNA (e.g., R or Python SNA packages) and real-wo	
datasets. The practical work will also include network visualization, as w	
collection and preparation for network analysis.	
Literature/Readings	
Selected chapters from the following books:	
□ M. Tsvetovat and A. Kouznetsov. 2011. Social Network Analysis	for Startups:
<i>Finding connections on the social web.</i> O'Reilly Media Inc., Seba USA.	-
 D. Easley and J. Kleinberg. 2010. Networks, Crowds, and Market 	s· Reasoning
<i>about a Highly Connected World</i> . Cambridge University Press, N	•
USA.	
The number of class hours per week	Other classes:
Lectures: Labs: Workshops: Research study:	-
4 3	
Teaching methods: Lectures will introduce main concepts for each course topic	
lot of practical work with the topic-specific software libraries. Research study will b	be fully practical,
based on individual and group work.	
Evaluation/Grading (maximum 100 points)	
Pre-exam requirements Points Final exam	Points

Project: simple application case	0 - 40	Project: real-world application	0-60
		case	

Course: Text Mining

Teacher: Jelena Jovanović, Sonja Dimitrijević

Course status: Elective

ECTS points: 10

Prerequisites: none

Course objective

To guide and assist students in:

- developing a solid understanding of a typical text mining workflow

- learning principal text mining methods and techniques, including those used in text classification and clustering, topic modeling, key-terms extraction, and text summarization.

- developing working knowledge of text mining in R and/or Python programming language(s).

Learning outcomes

Students will be able to apply text mining methods and techniques to classify and cluster unstructured text-based content, as well as to extract key terms and main topics from such content. They will also know how to evaluate the performance of individual methods and techniques, as well as how to benchmark different methods and techniques.

Course structure and content

The course will cover the overall text mining process and examine in detail each of the key phases of a typical text mining workflow. In particular, the following will be covered:

- exploratory analysis of a given corpus (i.e. text-based dataset)

- text preprocessing

- transformation of unstructured textual content to a structured numerical format, that is, feature creation; different text representation / feature creation methods will be considered, including both traditional ones (e.g. vector space model) and more recent ones (e.g. word vectors)

- reducing typically very large feature space through feature selection techniques

- selection of a statistical, or a machine learning, or a graph-based algorithm to be used in conjunction with the created feature set to build a model for pattern mining or information extraction

- examining and evaluating the results produced by the built model.

Various methods for typical text mining tasks will be introduced, including methods for text classification and clustering, as well as those used for the detection of key-terms and topics. Finally, the course will demonstrate the iterative (cyclic) nature of the text mining workflow, aimed at achieving better performance through alteration of individual phases of the process. All phases of the text mining workflow will be introduced through practical work with publicly available software libraries for text mining (e.g., relevant R or Python packages) and real-world corpora (i.e. text-based datasets).

Literature/Readings

Selected chapters from the following books:

- J. Silge & D. Robinson. Text Mining with R A Tidy Approach. O'Reilly, 2017. E-book publicly available at: <u>http://tidytextmining.com/</u>
- T. Kwartler. Text Mining in Practice with R. Wiley, 2017

The number	Other classes:					
Lectures:	Labs:	Workshops:	Research study:	_		
4		1	2			
Teaching methods: Lectures will introduce main concepts for each course topic, and will include						
a lot of practical work with the topic-specific software libraries. Workshops and research study						
will be fully practical, based on individual and group work.						

Evaluation/Grading (maximum 100 points)						
Pre-exam requirements	Pre-exam requirements Points Final exam Points					

Project: simple applic. case $0-40$	Project: real-world application case $0-60$
-------------------------------------	---

Study program / study program	s: Advanced da	ata analytics	
Course: Artificial Intelligence / M			
Teacher: Vladan B. Devedžić, Bo			rić
Aleksandra Alorić, Marija Mitrov	•		
Course status : Elective		inarej Referite, Senja Dimurjevi	•
ECTS points: 10			
Prerequisites: none			
Course objective			
Mastering the fundamentals, te	chniques and	applications of artificial intelli	gence.
Learning outcomes			-
Students will learn basic conce	pts and techni	ques of artificial intelligence a	nd gain
practical skills for their applica			U
Course structure and content		,	
Lectures			
	rview of the d	omain of Artificial Intelligenc	e and
□ Basics of Machine Lean		s and techniques of data prepa ear regression, classification a	
clustering.		, , , , , , , , , , , , , , , , , , , ,	
6	representation	. Rule-based decision making	
 Basic concepts of Neur 	-	. Rule bused decision making	•
Ĩ			
Labs			
Practical tasks utilizing softwar	re frameworks	, tools and/or services specific	to each of
the areas covered in this course	e. The software	e frameworks that students will	ll work with
are based on Java, Python and/	or R. program	ming languages.	
Literature/Readings		6 6 6	
	ificial Intellige	nce - A Modern Approach, The 3	rd Edition.
Prentice Hall, Englewood			
Online materials hosted o			
Additional literature:			
 Documentation and tutori during the labs. 	als for software	e frameworks, tools and services	that are used
The number of class hours per v	week	(
			Other classes
	Workshons	Research study	Other classes:
Lectures: Labs:	Workshops: 1	Research study: -2	Other classes:
	-	•	Other classes: -
Lectures: Labs: 4	1	2	-
Lectures:Labs:4Teaching methodsLectures: slides and case studies r	1 related to the co	2 vered concepts and technologies.	-
Lectures: Labs: 4 Teaching methods	1 related to the co ts on a compute	2 vered concepts and technologies.	-
Lectures:Labs:4Teaching methodsLectures: slides and case studies rOther: practical work with studenactively involved in the discussion	1 related to the co ts on a compute n.	2 wered concepts and technologies. er covering real-world use cases,	-
Lectures:Labs:4Teaching methodsLectures: slides and case studies rOther: practical work with studenactively involved in the discussion	1 related to the co ts on a compute n.	2 vered concepts and technologies.	-

Course: Data V Teacher: Draga Korenić Course status: I ECTS points: 1 Prerequisites: n Course objectiv Detailed introd data analytics. Learning outco Students will m visualization us Course structur Most of the cla are introduced programming l	an O. Đurić, Antur Elective 10 none ve duction to curren omes master appropriat using state-of-the re and content asses are focused through practica languages and vi	n Balaž, Aleksand nt visualization te programming -art programmin	dra A tools g met ng la	lorić, Marija Mitrović Dar s, methods and techniqu hods and techniques for nguages in advanced dat	ues in data	
Teacher: Draga Korenić Course status: I ECTS points: 1 Prerequisites: n Course objectiv Detailed introd data analytics. Learning outco Students will n visualization us Course structur Most of the cla are introduced programming I development of	an O. Đurić, Antur Elective 10 none ve duction to curren omes master appropriat using state-of-the re and content asses are focused through practica languages and vi	nt visualization te programming -art programmin	tools g met ng la	s, methods and techniques for	ues in data	
Korenić Course status: I ECTS points: I Prerequisites: n Course objectiv Detailed introd data analytics. Learning outco Students will n visualization us Course structur Most of the cla are introduced programming I development of	Elective Elective Elective Elective None Ve duction to current omes master appropriate using state-of-the re and content asses are focused through practica languages and vi	nt visualization te programming -art programmin	tools g met ng la	s, methods and techniques for	ues in data	
Course status: I ECTS points: I Prerequisites: n Course objectiv Detailed introd data analytics. Learning outco Students will m visualization us Course structur Most of the cla are introduced programming I development of	10 none ve duction to curren omes naster appropriat ising state-of-the ire and content asses are focused through practica languages and vi	te programming -art programming l on practical da	g met ng la	hods and techniques for	data	advanced
ECTS points: 1 Prerequisites: n Course objectiv Detailed introd data analytics. Learning outco Students will n visualization us Course structur Most of the cla are introduced programming 1 development of	10 none ve duction to curren omes naster appropriat ising state-of-the ire and content asses are focused through practica languages and vi	te programming -art programming l on practical da	g met ng la	hods and techniques for	data	advanced
Prerequisites: n Course objectiv Detailed introd data analytics. Learning outco Students will n visualization us Course structur Most of the cla are introduced programming l development of	none ve duction to curren omes master appropriat using state-of-the re and content asses are focused through practica languages and vi	te programming -art programming l on practical da	g met ng la	hods and techniques for	data	advanced
Course objective Detailed introd data analytics. Learning outco Students will m visualization us Course structure Most of the cla are introduced programming l development of	ve duction to curren omes master appropriat using state-of-the ire and content asses are focused through practica languages and vi	te programming -art programming l on practical da	g met ng la	hods and techniques for	data	advanced
Detailed introd data analytics. Learning outco Students will m visualization us Course structur Most of the cla are introduced programming l development of	duction to current omes master appropriat using state-of-the are and content asses are focused through practica languages and vi	te programming -art programming l on practical da	g met ng la	hods and techniques for	data	advanced
data analytics. Learning outco Students will m visualization us Course structur Most of the cla are introduced programming l development of	omes naster appropriat using state-of-the re and content asses are focused through practica languages and vi	te programming -art programming l on practical da	g met ng la	hods and techniques for	data	
Learning outco Students will m visualization us Course structur Most of the cla are introduced programming l development of	mes naster appropriat sing state-of-the re and content asses are focused through practica languages and vi	-art programmin	ng la	-		
Students will m visualization us Course structur Most of the cla are introduced programming l development of	master appropriat sing state-of-the re and content asses are focused through practica languages and vi	-art programmin	ng la	-		
visualization us Course structur Most of the cla are introduced programming l development of	ising state-of-the re and content asses are focused through practica languages and vi	-art programmin	ng la	-		
Course structure Most of the cla are introduced programming le development of	are and content asses are focused through practica languages and vi	l on practical da	0	nguages in advanced dat	ta anal	
Most of the cla are introduced programming la development of	asses are focused through practica languages and vi		to:		u unu	ysis.
are introduced programming l development of	through practica languages and vi		to			
programming la development of	languages and vi	al work, regardle	ua VI	sualization skills. High l	evel co	oncepts
development of	00		ess o	f the tools used in the co	ourse. I	Different
	f the field so the	sualization tool	s wil	l be used in classes, acco	ording	to the
	n me neiù so ma	t it always work	ks wi	th state-of-the-art tools.	_	
muouucuon		2				
Programming	g environments					
	zation libraries and	d tools				
Using the do	cumentation					
	selected data visua	alization tools				
Getting starte	ed					
Plot compone						
Aesthetics						
Geometries						
Toolbox						
Grammar of Gra	aphics					
Plot Layers	-					
Scales, Axes	and Legends					
Positioning	-					
Themes						
Using visualizat	tion in data analys	is				
Data Analysi	is					
Data transfor	rmation					
Modeling for	r visualization					
Programming	g with selected da	ta visualization to	ools			
Literature/Read						
•		•	•	or Data Analysis", Springer		
			ok: Pr	ractical Recipes for Visu	alizing	g Data
2nd Edi	lition" O'Reilly,	2018				
. Matplo	otlib user's guide.	Online. Avalila	able:	https://matplotlib.org/us	sers/in	dex.html
The number of	class hours per v	week			Othe	r classes:
Lectures: 1 4	Labs:	Workshops:	Res 3	earch study:	_	
Teaching metl	hods		-		1	
-	group work; lec					
			naxin	num 100 points)		
Pre-exam requi		Points		Final exam		Points
Project (impler	mentation)	50		Data visualization prob	lem	50

Study program / study programs: Advanced data analytics **Course:** Big Data Analytics Teacher: Vukmirović Dragan, Jeremić Veljko, Tomašević Nikola, Batić Marko

Course status: Elective

ECTS points: 10

Prerequisites: none

Course objective: This course will cover the basic concepts of big data analytics, methodologies for analyzing structured and unstructured data with emphasis on the relationship between the Data Scientist and the business needs.

Learning outcomes: After the course, student will be able to critically analyse existing Big Data datasets and implementations, taking practicality, and usefulness metrics into consideration. Moreover, to understand and demonstrate advanced knowledge of statistical data analytics as applied to large data sets.

Course structure and content

The concepts and techniques of Big Data analytics are first introduced through the review and presentation of theoretical foundations, followed by practical work using contemporary statistical and simulation software.

Research Methodology

Introduction to Data & Data Science

Data Analytics Lifecycle and methodology

Data Cleaning & Preparation

Data Summarization & Visualization

Building a Data Model in software environment

Data Analytics: Theory & Methods (supervised and unsupervised learning in Big Data)

Spark 2.0, Spark ML Library, R

The ethics of using (and misusing) data

- □ Walkowiak, S. (2016). Big Data Analytics with R: Leverage R Programming to uncover hidden patterns in your Big Data. Packt Publishing. Available online: https://www.packtpub.com/big-data-and-business-intelligence/big-data-analytics-r
- □ Bahga, A., & Madisetti, V. (2016). Big Data Science & Analytics: A Hands-On Approach. VPT. Available online: https://www.amazon.com/Big-Data-Science-Analytics-Hands/dp/0996025537
- Li, K. C., Jiang, H., Yang, L. T., & Cuzzocrea, A. (Eds.). (2015). Big data: Algorithms, analytics, and applications. CRC Press.. Available online: https://www.crcpress.com/Big-Data-Algorithms-Analytics-and-Applications/Li-Jiang-Yang-Cuzzocrea/p/book/9781482240559
- Erl, T., Khattak, W., & Buhler, P. (2016). Big Data Fundamentals: Concepts, Drivers & Techniques. Prentice Hall Press. Available online: https://www.amazon.com/Big-Data-Fundamentals-Techniques-Technology/dp/0134291077
- Provost, F., & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. O'Reilly Media. Available online: http://shop.oreilly.com/product/0636920028918.do

The number of class hou	rs per week			
Lectures: Labs:	Workshops:	Research study:		
4	1	2		
Teaching methods: Individual and group work; lectures and labs				
Evaluation/Grading (maximum 100 points)				
Pre-exam requirements	Points	Final exam	Points	
Project (implementation	a) 60	Verbal exam	40	

Study program / study programs: A	Advanced	data a	analytics
-----------------------------------	----------	--------	-----------

Course: Introduction to Statistical Inference

Teacher: Bulajić Milica, Vukmirović Dragan, Radojičić Zoran, Jeremić Veljko, Dobrota Marina, Maričić Milica, Alorić Aleksandra, Mutavdžić Dragosav

Course status: Elective

ECTS points: 10

Prerequisites: none

Course objective: Acquiring the ability to conduct statistical analysis, to interpret the obtained results, and to learn from the basic statistical methods and models how to study the observed phenomena as the subject of quantitative analysis. Getting acquainted with modern statistical software.

Learning outcomes: After the course, student will acquire the basics needed for understanding the concepts of advanced data analytics in contemporary statistical software.

Course structure and content

The concepts and techniques of statistical inference are first introduced through the review and presentation of theoretical foundations, followed by practical work using contemporary software. Introduction to statistics

Statistical set Statistical feature

Sampling

Descriptive statistics

Collection, preparation and data visualisation

Random variables and distribution models

Statistics and parameters

Estimation procedures

Point estimates

Confidence intervals

Hypothesis testing

Parametric tests

Nonparametric tests

Linear regression models

Simple linear regression

Multiple linear regression

Implementation of the covered methods and models in contemporary statistical software

- Uković, N. & Bulajić, M. (2014). Osnove statistike. Fakultet organizacionih nauka, Beograd.
- Mann, S. P. (2016). *Uvod u statistiku*. Ekonomski fakultet, Beograd.
- □ Field, A., Miles, J., & Field, Z. (2012). *Discovering statistics using R*. Sage publications. https://us.sagepub.com/en-us/nam/discovering-statistics-using-r/book236067

The number of	class hours	s per week			
Lectures:	Labs:	Workshops:	Research study:		
4		l	2		
Teaching met	Teaching methods: Individual and group work; lectures and labs				
Evaluation/Grading (maximum 100 points)					
Pre-exam requi	irements	Points	Final exam	Points	
Project (implei	mentation)	60	Verbal exam	40	

Course: Big Data in Social Sciences

Teacher: Jelena Pešić, Irena Petrović, Jelisaveta Petrović, Dragan Stanojević, Oliver Tošković

Course status: Elective

ECTS points: 7

Prerequisites: /

Course objective(s)

The objective of the *Big Data in Social Sciences* course is to introduce students to the social, ethical and methodological challenges that stem out from the use of big social data, as well as to familiarize them with the ways of overcoming these challenges in social sciences.

Learning outcomes

- Knowledge of different types and ways of using big data in social sciences

- Knowledge of methodological possibilities and restrictions on the use of big data in social sciences

- Familiarization with the ways of combined use of big data and "small / micro" data sets collected by standard social research techniques (survey research, interviews, observation, etc.)

- Knowledge of ethical standards in using big social data
- Awareness of the legal aspects of the use of big social data
- Developed ability of critical assessment of big social data

Course structure and content

- Types, sources and quality of big social data

- Social implications of using big data: digital inequalities and divisions, surveillance and freedom, privacy concerns, social scoring system, etc.

- The use of big data in social sciences in different fields: political behaviour, consumer practices,

crime, forms of communication through social networks, socio-spatial phenomena, etc.

- Methodological aspects of using big data in social sciences - representativeness, bias,

measurement and sampling errors, decontextualization, etc.

- Combining different sets of data: "small / micro" and large in the analysis of social phenomena.

- Ethical aspects of the use of big data in social sciences.

- Legal frameworks for the use of big social data with a special emphasis on the European Union legislation (GDPR).

Literature/Readings

- . Foster, I et al. (2017) *Big Data and Social Sciences A Practical Guide to Methods and Tools*, London: CRC Press. (selected chapters)
- . Hoeren, T, Kolany-Raiser (eds.) (2018) *Big Data in Context Legal, Social and Technological Insights.* Springer Open. (selected chapters)
- . Petrović, J. (2018) "Veliki" podaci veliki izazov za sociologiju? *Sociologija* 60(3):557-582.

Boyd, D., Crawford, K. (2012) Critical Questions for Big Data, *Information, Communication and Society* 15(5):662-679.

The number of class hours per week		Other classes:		
Lectures: 5 Labs:	Workshops: 1	Research study: 2		
Teaching methods				
Individual and group work; lec	ctures and labs.			
Eva	luation/Grading	(maximum 100 points)		
Pre-exam requirements	Points	Final exam	Points	
Development of the research	0-30	Developed design of the	0-70	
design and Power point		research on selected social		
presentation of the research		phenomenon using big data	ι	
phases				

Study program / study programs: Advanced data analytics
Course: Analysis of International Research Datasets
Teacher: Jelena Pešić, Irena Petrović, Jelisaveta Petrović, Dragan Stanojević, Oliver Tošković

Commente da tra	- F 1			
Course status ECTS points:				
1		sia statistical and	alysis techniques; skilled	in SDSS
Course object		isic statistical alla	arysis teeninques, skined	111 SF 55
		a from internat	ional official statistics	and comparative social
	bases and datase		ional official statistics	and comparative social
Learning out				
0		rent internation	al comparative databas	ses (macro- and micro-data).
			-	national comparative data.
				ternational comparative data.
0	11	1	2	e data in solving different
U	ms and designing	0	anonar and comparant	e dutu in sorving different
.	ure and content	5 poneies.		
		ction to differen	t types of international st	tatistical and academic databases
			ability and comparabilit	
	nternational compa		5 1	5
			Bank, UN - HDI, OECI	D, Structural Business
			preneurship Monitor, etc.	
	1 V		EUROSTAT, CEPAL)	
	ler Statistics (EIG		· · · · · · · · · · · · · · · · · · ·	
	nternational compa			
			nd Living Conditions (E	U SILC)
	opean Union Labo	•	(EULFS)	
	opean Social Surve Id Value Survey			
	rnational Social Su		SP)	
		• •	on comparative internation	onal micro-data. Topics:
. .	dividual and Social	•		nui mero dud. Topies.
	eneral and Institut			
А	ttitudes on migrati	ion (ESS)		
	ttitudes on Family		es (ISSP)	
	ttitudes on Work			
	ttitudes on Social	· ·	VS)	
	olitical Participatio	on (WVS)		
Literature/Re				: : D
		•	Data Analysis, Sage U	
		: An Introductio	on to Secondary Data A	Analysis With IBM SPSS
	tics, Sage			
			y Data in Education a	nd Social Research, Mc Graw
	Dpen University I			
			ena analiza podataka. I	
			navanja, Ekonomski fa Ankata o radnoj snazi	
-		-	Anketa o radnoj snazi	, deugrau
		1	ration – introduction	2title_Statistical accomparation
		urostat/statistic	s-explained/index.php	?title=Statistical_cooperation
	oduction)	II statistics on 3	income and living con	ditions (FUSILC) methodology
			_	ditions (EU-SILC) methodology
· 1	://ec.europa.eu/e			conditions (EU
-		So_statistics_of	n_income_and_living_	conditions_(EU-
)_methodology) of class hours per	wook		Other classes:
Lectures:	Labs:	Workshops:	Research study:	
5		1	2	
Teaching met	hods	1	1	
	group work; lectu	ires and labs.		

Evaluation/Grading (maximum 100 points)			
Pre-exam requirements	Points	Final exam	Points
Power point presentations of	0-40	Research paper – application	0-60
small research tasks		of statistical techniques on	
		analysis of comparative data	

Course: Advanced data analysis in social sciences

Teacher: Jelena Pešić, Jelisaveta Petrović, Dragan Stanojević, Irena Petrović, Oliver Tošković

Course status: Elective

ECTS points: 7

Prerequisites: Knowledge of basic statistical analysis techniques

Course objective(s)

Students will have the opportunity to familiarize with the advanced statistical methods and to perform analysis and interpretation of different datasets relevant for social science. The course concentrates on the practical application of advanced statistical methods and approaches in analyzing social world using cross-sectional, comparative, longitudinal, and panel datasets.

Learning outcomes

Application of a range of advanced statistical methods on social science datasets:

- Correspondence analysis
- Linear regression
- Ordinal linear regression
- Logistic regression
- Nonlinear models
- Multilevel
- Structural equations

Use of the statistical packages SPSS, STATA and R

Interpretation of the statistical outputs

Writing reports based on advanced statistical analysis

Course structure and content

- 1. Introduction to practical advanced statistical modelling using social science datasets
- 2. Correspondence analysis
- 3. Linear regression
- 4. Ordinal regression
- 5. Logistic regression
- 6. Multinomial regression
- 7. Nonlinear models
- 8. Multilevel models mix models
- 9. Structural equations modelling

- Michael Mitchell, 2012, Interpreting and Visualizing Regression Models Using Stata, Stata Press.
- MacInnes, John, 2017, An Introduction to Secondary Data Analysis with IBM SPSS Statistics, Sage.
- Jasna Soldić-Aleksić, 2015, *Primenjena analiza podataka. Rad u programima za statističku analizu i tabelarna izračunavanja*, Ekonomski fakultet, Beograd
- Andy Field, 2013, *Discovering Statistics Using IBM SPSS Statistics*, 4th Edition, SAGE Publications Ltd.

The number	r of class hours		Other classes:	
Lectures:	Labs:	Workshops:	Research study:	
5		1	2	
Teaching m	ethods			
Individual an	nd group work; l	ectures and labs.		
		Evaluation/Grad	ling (maximum 100 points)	
Pre-exam re	equirements	Points	Final exam	Points
Presentations	s of research	0-30	Research paper – applicat	ion 0-70
project			of advanced statistical	
			models on social science	
			datasets	

Study program / study programs: Advanced data analytics
Course: Discrete structures
Teacher: Vesna P. Todorčević, Nebojša T. Nikolić

Course status: Elective

ECTS points: 10

Prerequisites: none

Course objective

Mastering some standard topics of discrete mathematics as basics of mathematical logic and graph theory, relational structures, finite automata and formal languages.

Learning outcomes

The subject matter of this course is to teach the students the ways of formal deductions, to make them familiar with important applications of mathematical formalizations in the organization and the search of a large data basis as an important foundation for advanced analysis of data.

Course structure and content

Lectures

Basic notions. Propositional calculus. Rules of inference in propositional calculus. First order logic. Truth value of a first order formula. Valid sentences. Relational structures. Partially ordered set, chain and lattice. Elementary graph theory. Trees. Coding and recognition of music melodies using graph theory. Music data base. Finite machines and finite automata. Minimization of automata. Formal languages and grammars.

Labs

Properties of the logical connectives. Elimination of certain logical operations. Properties of quantifiers. Truth values of propositional formulas. Relations on finite sets. Suprema, infima, lattices. Relations on infinite sets. Representing graphs, paths in graphs. Trees. Application of trees in computability theory. Finite automata. Minimization of finite automata. Regular grammars.

Literature/Readings

Basic literature:

- 1. Čangalović M., Todorčević V., Baltić V. Discrete mathematical structures, textbook, FOS, 2019.
- 2. Todorčević V., Čangalović M., Baltić V. Book of problems from Discrete mathematical
- structures, FOS, 2016.

Additional literature:

- 1. D. Cvetković, S. Simić, Discrete Mathematics, Mathematics for computer sciences, Libra, Belgrade, 2000.
- 2. A.J. Anderson, Discrete Mathematics with Combinatorics, Pearson Education, 2004.
- 3. D. Cvetković, V. Manojlović, Spectral recognition of music melodies, SYM-OP-IS 2013, 269-271.
- 4. D. Cvetković, T. Drobni, V. Todorčević, Recognition of music melodies in spectral graph theory, Phlogiston, 26 (2018), 165-180.

The number of class hours	Other classes:				
Lectures: Labs:	Workshops:	Research study:			
4		3			
Teaching methods					
Classical teaching method u	sing blackboards, ov	erhead projectors and compu	ater presentations		
Evaluation/Grading (maximum 100 points)					
Pre-exam requirements	Points	Final exam	Points		
Activity during classes	5	Written exam	20		
Practical classes	5	Oral exam	40		
Colloquium(s)	20				
Seminar(s)	10				

Course: Mathematical Foundations of Data Analysis

Teacher: Tanja Stojadinović

Course status: Elective

ECTS points: 10

Prerequisites: -

Course objective(s) Acquisition of general and specific knowledge of Linear Algebra and Numerical Analysis

Learning outcomes Upon completion of the course, students have the basic knowledge of linear algebra and numerical methods. They are able to solve problems in these fields and to apply acquired concepts and techniques in other fields.

Course structure and content

-System of linear equations and Gaussian elimination

-Vectors in Rⁿ; linear combinations, linear spans, linear dependence; basis and dimension

-Matrices; matrix addition and scalar multiplication; transpose

- -Elementary row operations; echelon matrices, rank of a matrix
- -Matrix multiplication; invertible matrices
- -Determinant; Properties of determinants; minors and cofactors; adjoint of a matrix

-Linear mappings; kernel and image of a linear mapping

-Matrix representation of a linear map

-Eigenvalues and eigenvectors; diagonalization

-Inner product spaces; orthogonality, orthonormal sets; orthogonal projection, applications

-Numerical methods for solving systems of linear equations; direct methods and iterative methods -Numerical methods for computing eigenvalues and eigenvectors

-Polynomial interpolation and other methods for function approximation;

-Fourier transformation; discrete Fourier transformation; fast Fourier transformation

Literature/Readings

- □ 1. A. Lipkovski, Linearna algebra i analitička geometrija, 2nd edition, Zavod za udžbenike i nastavna sredstva, Beograd, 2007;
- 2. S. Lipschutz, Schaum's Outline of Theory and Problems of Linear Algebra, 2nd ed, Mc Graw-Hill, New York, 1991;
- □ 3. D. Radunović, Numeričke metode, Akademska misao, Beograd, 2004.
- □ 4. F. B. Hildebrand, Introduction to Numerical Analysis, 2nd edition, Dover Publications, INC, New York, 2013.

□ 5. G.Shanker Rao, Mathematical Methods, I.K. International Publishing House, 2013.

The number of class hours per week				Other classes:	
Lectures:	Labs:	Workshops:	Research study:		
4			3		
Teaching m	ethods				
Frontal, grou	p, practical				
Evaluation/Grading (maximum 100 points)					
Pre-exam rec	quirements	Points	Final exam	Points	
Exercises, C	olloquia	40	Written-oral exam	60	