

Data Analytics

Josep Maria Salanova Grau Neofytos Boufidis

Big and Open Data Importance Data: Big & Open (free, reusable & redistributable)

• Public

- Accessible
- Described
- Reusable
- Complete
- Timely
- Managed post-release

Source: Big and open data in Europe

Data Analytics in Transport

Problem

Consultant (internal or external)

Scenario	1
Scenario	2
Scenario	3
Scenario	4

Decision Support in Transport Policy

- What to?
 - High-level experts
 - Experience
 - Best practices
- What if?
 - Models

THE GAME OF POLITICS

By ROBERT J. AUMANN

Anatol Rapoport, Fights, Games, and Debates, Ann Arbor, The University of Michigan Press, 1960, 400 pp. \$6.95.

THE last decade has seen a tremendous outpouring of work on the applications of mathematics to the non-exact sciences. In the accepted jargon, this activity is called "model-building"; mathematical models have been built in disciplines ranging from biology and psychology to economics, sociology, linguistics, and even politics. One of the most engaging of these models is the whimsically named "theory of games." More to the point would have been to call it a "theory of conflict and cooperation"; but mathematicians like to christen their babies according to their appearance, not according to the job they are expected to do. Mathematically, wars and games look

Decision Support in Transport Policy- User generated content

Data Analytics Workflow

Data Analytics and Al

Basic terminology

- Artificial intelligence consists of the "thoughts" and conclusions that computers make after receiving data inputs. If human intelligence uses the brain to receive, store, and analyze information, artificial intelligence uses various technologies to also receive, store, and analyze information.
 - Machine learning is a branch within artificial intelligence in which computers use programming as a jumping-off point to create their own processes to <u>analyze vast amounts of data</u>. The machines themselves develop processes and algorithms to take these data and compute observations, trends, and conclusions about the data.
 - **Deep leaning** is a subset of machine learning in which multilayer neural networks are able to learn form vast amounts of data.

Big Data and Artificial Intelligence Mobility service providers Traffic info In-vehicle services MaaS aggregators Ticketing Travel planning Logistic operators Retail services Warehouse management

Mobility and transport **Eco-system** Data brokers Data market Automatic contracts City authorities TMC Policy PuT **Context-aware** smart car Fleet operators Routing _ Maintenance 3rd party mobility providers

- Micro-mobility assets
- Individual PuT

Thessaloniki mobility and traffic monitoring center The project aims at developing a unified platform for fusing, analyzing and processing heterogenous data relevant to the sector of mobility.

Estimating Time of Arrival of Trains at Level Crossings (LC) for the Provision of **Multimodal Cooperative** Services

Data

- Six months of train kinematics data were recorded
 - suburban itineraries
 - more than 5500 events of trains crossing LCs
- Data generated by on-board Global Navigation Satellite System (GNSS) enabled sensors
 - coordinates
 - instantaneous speed (magnitude and direction)
 - timestamp
 - metadata (train id, train type, etc)
- Recording frequency: 10 seconds

• Atypical train speed profiles around LCs

Time of Arrival Models

• Basic (not predictive) model was outperformed by machine learning models

- numerous algorithms were compared
- considered error: mean absolute error
- model assessment using unseen test data
- XGBoosting and Dense Neural Network (NN) were the best performing
 - after parameter optimization and improvements, the NN was the most accurate model

Best Performing Model

- Dense Neural Network
 - two hidden layers, sigmoid activation function
 - **p=0.15 dropout and 60 training epochs**
 - a mean absolute error of under 10 and 5 seconds, when predicting the arrival of trains within a radius of 2000 and 1000 meters, respectively.

Impact on Drivers

Analysis on trajectories of taxis around the level crossings.

Trajectory classification examples:

Development of a stationlevel demand prediction and visualization tool to support bike-sharing systems' operators

Introduction and scope

- study and improve the existing bike sharing system in Thessaloniki, Greece
 - > 5 years of operation 8 stations 200 bikes
- develop a rentals prediction tool

Bike flows amongst the stations

Re-distribution of bikes

The Data Analytics Dashboard

Predictive tool features:

- automated training, optimization (grid search cross-validation) and evaluation (10-fold crossvalidation of different machine learning algorithms
- results on an interactive user interface (dashboard)

Tool architecture:

Model Evaluation Metrics

	Train set metrics				Test set metrics			
Bike rentals	MAE	MSE	RMSLE	\mathbb{R}^2	MAE	MSE	RMSLE	R ²
Gradient Boosting	0.75	1.81	0.42	0.76	0.85	2.69	0.46	0.64
XGBoost	0.76	1.91	0.43	0.74	0.85	2.71	0.46	0.63
Random Forest	0.72	1.91	0.40	0.74	0.85	2.77	0.46	0.63
Neural Network	0.89	2.66	0.49	0.64	0.91	3.00	0.49	0.6
Bike returns					1			
Gradient		•	• •		•	•	• •	
Boosting	0.74	1.80	0.42	0.75	0.85	2.69	0.46	0.63
XGBoost	0.76	1.90	0.43	0.74	0.85	2.70	0.46	0.63
Random Forest	0.71	1.90	0.40	0.74	0.84	2.76	0.46	0.62
Neural Network	0.89	2.66	0.48	0.64	0.91	3.00	0.49	0.59

Correlation between digital and physical world, case study in Thessaloniki

Correlation between digital and physical world, case study in Thessaloniki

Fusion of heterogenous datasets to study the correlation between activity and transport patterns.

Data:

- FCD from a taxi fleet of 1200 vehicles
- check-in events collected from 2951 locations in the city center, generating ~44.000 check-in events per week in the 750 most visited locations with a total of 1265 check-in events during the most active hour
- Study period: March 2016

Correlation between digital and physical world, case study in Thessaloniki

Evening (taxi origins)

More Data Analytics Cases...

Spatial monitoring of Facebook check-ins every 30 minutes.

CAFE

2/22/2016 0:002/23/2016 0:002/24/2016 0:002/25/2016 0:002/26/2016 0:002/27/2016 0:002/28/2016 0:002/29/2016 0:00 3/1/2016 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0:00 3/2000 0

Total check-ins by type in a typical Saturday

Correlation between digital and physical world, case study in Thessaloniki

Concentration of check-in events and taxi trips origins/destinations:

Modeling the Effects of Precipitation on Vehicle Speed

Modeling the Effects of Precipitation on Vehicle Speed

- a floating Car Data approach
- summer of 2014, a period with extraordinary precipitation

• avg speed reduction:

Modeling the Effects of Precipitation on Vehicle Speed

Speed reduction in several road sections:

Modeling the Effects of Precipitation on Vehicle Speed

• Best fitting model (R² = 0.78)

$$v_c = v_0(0,984 - 0,0563 * \sqrt{i})^2 \forall i > 0$$

where:

v_c: vehicle speed under rain conditions

v_o: vehicle speed under dry conditions

i: precipitation intensity in mm/h

...more:

Short-Term Prediction of the Traffic Status in Urban Places Using Neural Network Models

Short-Term Prediction of the Traffic Status in Urban Places Using Neural Network Models

• A tool for short-term prediction of travel speed on any selected road section

Input	Description
Path	The path with the historical data available
Link_id	The Link_id for the road to be predicted
Direction	The direction of the road to be predicted
Datetime	The time and date for the prediction
Steps	How many steps forward will the prediction be
Predict	The variable to be predicted. Either "Mean_speed" or "Entries"

Table 1. Short description of the inputs in the algorithm.

feature extraction (calculation of input variables for the model)

	Min_speed	Max_speed	Stdev_speed	Skewness_speed	Kurtosis_speed	Entries =	UniqueEntries	Mean_speed
2017-01-16 22:15:00	0.04838710	0.4915254	0.34838094	0.5029376	0.4147874	0.154411765	0.42857143	0.34693878
2017-01-16 22:30:00	0.32258065	0.3898305	0.26030382	0.5844592	0.3162458	0.088235294	0.24489796	0.32653061
2017-01-16 22:45:00	0.11290323	0.2542373	0.23749948	0.2927972	0.6167640	0.091911765	0.28571429	0.32653061

Short-Term Prediction of the Traffic Status in Urban Places Using Neural Network Models

• A neural network model is used to predict the mean speed on the road section of interest

Link	Date time	Predicted speed	Real speed	RMSE
1	2017-01-12 19:30:00	17.07	16.71	0.35
1	2017-01-12 19:45:00	16.88	16.14	0.74
1	2017-01-12 20:00:00	16.02	15.57	0.45
1	2017-01-12 20:15:00	15.69	15.00	0.69
2	2017-01-14 16:00:00	36.75	37.28	0.53
2	2017-01-14 16:15:00	37.26	37.85	0.59
2	2017-01-14 16:30:00	37.77	38.42	0.65
2	2017-01-14 16:45:00	38.31	39.00	0.68

et/publication/329578237_Short-Term Prediction of the Traffic Status i n Urban Places Using Neural Network Models Proceedings of 4th Conferen ce on Sustainable Urban Mobility CSU M2018_24_-25 May Skiathos Island Greece

Evaluation framework in Cooperative Intelligent Transport Systems (C-ITS) for freight transport: the case of the CO-GISTICS speed advice service

Methodology: Festa

KPIs

Evaluation criteria	KPIs	Description	Unit	Quantitative/ qualitative
Network efficiency	Average vehicle speed	Mean speed of the vehicle per route Standard deviation of vahicle speed per route	km/h	Quantitative
	Approach speed to green traffic light 5 m	Speed at 5 m before a green traffic light	km/h	Quantitative
	Approach speed to green traffic light 10 m	Speed at 10 m before a green traffic light	km/h	Quantitative
	Approach speed to green traffic light 20 m	Speed at 20 m before a green traffic light	km/h	Quantitative
	Approach speed to red traffic light 5 m	Speed at 5 m before a red traffic light	km/h	Quantitative
	Approach speed to red traffic light 10 m	Speed at 10 m before a red traffic light	km/h	Quantitative
	Approach speed to red traffic light 20 m	Speed at 20 m before a red traffic light	km/h	Quantitative
	Maximum acceleration	Peak level of longitudinal or lateral acceleration achieved during a route	m/s ²	Quantitative
	Average number of stops and go per route	Mean number of stops and go per vehicle route	Integer	Quantitative
	Average travel time (local area)	Mean travel time duration per route in the pilot site area	hh/mm/ss	Quantitative
	Average fuel consumption (local area)	Mean fuel consumption of the vehicle in the pilot site area	Vtkm	Quantitative
	Average CO ₂ emissions (local area)	Mean CO ₂ emissions of the vehicle in the pilot site area	gCO2/tkm	Quantitative
	Average fuel savings (local area)	Mean of fuel savings of a CO-GISTICS vehicle per route respect to the situation before CO- GISTICS	%	Quantitative
Driver-specific metrics	Perceived system usefulness and	Perception of the potential usefulness and of the benefits deriving by the use of a CO-GISTICS	Six-point rating scale	Qualitative and
	Driving behaviour	Questionnaire able to assess variations during the normal driving (perception of frequency of lanses, errors, violations, etc.)	Five-point rating scale	Qualitative and Ouantitative
	Customer satisfaction	Customer satisfaction related to a CO-GISTICS service	Five-point rating scale	Qualitative

Quantitative KPIs Formulas

KPI	Formula	Reference
Total distance per route	Distance $(km) = \sum_{t=1}^{t=n-1} Haversine[pos(t), pos(t+1)]$	[16]
Total duration per route	Duration(minutes) = Duration(t, t + 1)	[4]
Average speed of a truck in a route	Average Speed $(km/h) = \frac{\sum_{t=1}^{tmn-1} Haversine[pos(t), pos(t+1)]}{Duration(t, t+1)}$	[4]
Instantaneous speed	Speed $(km/h) = \frac{Haversine[pos(t), pos(t+1)]}{Duration(t,t+1)}$ for $t in 1, \ldots, t-1$.	[4]
Truck speed standard deviation in a route	Speed Standard deviation(%) = $\sqrt{\frac{\sum_{t=1}^{d=n-1} [Speed(t) - AverageSpeed]^2}{n GPS points in a trip}}$	[12]
Instantaneous acceleration	$Acceleration(m/s^2) = \frac{Speed(t,t+1) - Speed(t-1,t)}{Duration(t,t+1)} for t in 1, \dots, t-2.$	[4]
Average fuel consumption of a vehicle per route	Av. fuel consumption per route (MJ) = $\frac{\sum_{i=1}^{T} Total energy consumption_{\{i\}}}{T}$	[14]
Average CO2 emissions of a vehicle per route	Av. CO ₂ emissions per route (kg CO2) = $\frac{\sum_{t=1}^{T} CO2 \text{ emissions per noute}_{[t]}}{T}$	[4];[9]
Average fuel savings	Av. Fuel Savings (%) = $\frac{Average Fuel Consumption_{operation}(i)}{Average Fuel Consumption_{builtien}} * \frac{[No Title]}{roo}$	[3]

Freight transport patterns extraction using Floating Car Data, case study in Thessaloniki

Dataset

- GPS pulses
- 383 truck vehicles in total
- duration: 2 months
- average of **4 pulses per minute**
- location: prefecture of Thessaloniki

After **data cleansing**, analysis is conducted on 90 vehicles, for ~ 4000 routes

KPIs for Trips

KPIs for Trips Entering the City Center

DEVELOPMENT OF A "FAIR" MARKETPLACE FOR ON-DEMAND CAPACITY MATCHING

Introduction and scope

- Independent e-market place (MP)
- Matching manufacturers to warehouses
 - ✓ splitting the benefit under a "fairness rule", according to market status
- Parameters considered:
 - ✓ min sell price defined by warehouse
 - ✓ max buy price defined by manufacturer
 - ✓ MPs commission fee rate
 - ✓ transaction cost per match
 - ✓ Availability index "AI" (demand to total supply ratio)
 - ✓ Manufacturer-warehouse distance

- price decided according to AI and adjusting factor γ
- demand is too high compared to the available space .
- all the economic benefit should be given to the warehouse
- too much excess warehouse capacity.
- all the economic benefit of the transaction is given to the manufacturer
- no economic benefit should given to the warehouse

Case-study

- Real-world case and data
- 20 manufacturers, 13 warehouse operators
- All manufacturers were matched / 6 of 13 warehouses utilized
- 2 warehouses covered 76% of manufacturers demand (sound result, as those are amongst the cheapest, largest and most suitably located warehouses of the dataset)

Risks estimation in the transport of dangerous goods for supporting policy making

Introduction and scope

Methodological framework for the estimation of hazardous levels during Fright transportation

• Qualitative and Quantitative Indicators

Data Sources

- Traffic model data for the assessment of accident Occurrence rate
- Urban development data for the calculation of population density and impact on accident occurrence
- Freight flow data to determine the likelihood of involvement of dangerous-goods vehicles in accidents
- Accident data (previous years)

Criteria for risk assessment

		-	Mater	ial Type				
Factors	Level	Explosive Material	Liquid Fuel	Gas Fuel	Chlorine			
Rate of	Low	< 0,5						
accidents (Accidents/	Medium	<1,5						
year)	High	>=1,5						
Traffic	Low		< 0,25					
situation (flow/	Medium	<0,7						
(flow/ capacity)	High	>= 0,7						
Transits of	Low	<12	< 2.700	< 2.700	<12			
DG vehicles (annual	Medium	N/A	< 8.100	< 8.100	N/A			
number of DG transits	High	N/A	>= 8.100	>= 8.100	N/A			
Fatal effects (number of	Low	R		< 1				
	Medium		3	< 3				
deaths)	High		0-	>= 3				

Dispersion rates

CERTH-HIT Portal

Applications and open datasets published/hosted in our portal:

- www.trafficthess.imet.gr
- www.trafficpaths.imet.gr
- www.trafficthessreports.imet.gr
- www.opendata.imet.gr
- www.thessmd.imet.gr

THANK YOU!